These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nimodipine increases excitability of rabbit CA1 pyramidal neurons in an age- and concentration-dependent manner. Author: Moyer JR, Thompson LT, Black JP, Disterhoft JF. Journal: J Neurophysiol; 1992 Dec; 68(6):2100-9. PubMed ID: 1491260. Abstract: 1. Cellular properties were studied before and after bath application of the dihydropyridine L-type calcium channel antagonist nimodipine in aging and young rabbit hippocampal CA1 pyramidal cells in vitro. Various concentrations of nimodipine, ranging from 10 nM to 10 microM, were tested to investigate age- and concentration-dependent effects on cellular excitability. Drug studies were performed on a population of neurons at similar holding potentials to equate voltage-dependent effects. The properties studied under current-clamp conditions included steady-state current-voltage relations (I-V), the amplitude and integrated area of the postburst afterhyperpolarization (AHP), accommodation to a prolonged depolarizing current pulse (spike frequency adaptation), and single action-potential waveform characteristics following synaptic activation. 2. Numerous aging-related differences in cellular properties were noted. Aging hippocampal CA1 neurons exhibited significantly larger postburst AHPs (both the amplitude and the integrated area were enhanced). Aging CA1 neurons also exhibited more hyperpolarized resting membrane potentials with a concomitant decrease in input resistance. When cells were grouped to equate resting potentials, no differences in input resistance were noted, but the AHPs were still significantly larger in aging neurons. Aging CA1 neurons also fired fewer action potentials during a prolonged depolarizing current injection than young CA1 neurons. 3. Nimodipine decreased both the peak amplitude and the integrated area of the AHP in an age- and concentration-dependent manner. At concentrations as low as 100 nM, nimodipine significantly reduced the AHP in aging CA1 neurons. In young CA1 neurons, nimodipine decreased the AHP only at 10 microM. No effects on input resistance or action-potential characteristics were seen. 4. Nimodipine increased excitability in an age- and concentration-dependent manner by decreasing spike frequency accommodation (increasing the number of action potentials during prolonged depolarizing current injection). In aging CA1 neurons, this effect was significant at concentrations as low as 10 nM. In young CA1 neurons, nimodipine decreased accommodation only at higher concentrations (> or = 1.0 microM). 5. We conclude that aging CA1 neurons were less excitable than young neurons. In aging hippocampus, nimodipine restores excitability, as measured by size of the AHP and degree of accommodation, to levels closely resembling those of young adult CA1 neurons. These actions of nimodipine on aging CA1 hippocampal neurons may partly underlie the drug's notable ability to improve associative learning in aging rabbits and other mammals. Reversal of inhibitory postsynaptic potentials (IPSPs) by chloride ion and/or current injections into six motoneurons revealed the presence of inhibition during the period between phrenic bursts during fictive vomiting and also during the final phase of expulsion when phrenic discharge ceased by abdominal discharge continued. 3. Fictive coughing, evoked by repetitive electrical stimulation of superior laryngeal nerve afferents, was characterized by a large phrenic discharge followed immediately by a large abdominal nerve discharge. During fictive coughing, phrenic motoneurons retained their ramplike depolarizations throughout phrenic discharge; however, the amplitude of depolarization was greater than during inspiration. During the subsequent abdominal nerve discharge, the phrenic membrane potential usually underwent an initial rapid, transient hyperpolarization followed by a gradual repolarization associated with increased synaptic noise.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]