These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of calcium influx and buffering in the kinetics of Ca(2+)-activated K+ current in rat vagal motoneurons.
    Author: Sah P.
    Journal: J Neurophysiol; 1992 Dec; 68(6):2237-47. PubMed ID: 1491269.
    Abstract:
    1. Intracellular recordings were obtained from neurons of the dorsal motor nucleus of the vagus (DMV) in transverse slices of the rat medulla maintained in vitro. These neurons had a resting potential of -59.8 +/- 8.7 (SD) mV. Single action potentials elicited by brief depolarizing current pulses were followed by a prolonged afterhyperpolarization (AHP). Under voltage clamp, the current underlying the AHP was found to be a calcium-activated potassium current. 2. The outward current (GkCa,1) was voltage insensitive and was not blocked by tetraethylammonium (TEA) (10 mM). Unlike the slower time course calcium-activated potassium current recorded in some other neurons, GkCa,1 was blocked by apamin (25-100 nM), indicating that SK type calcium-activated potassium channels underlie this current. 3. GkCa,1 was maximal within 10 ms of the action potential and its decay was well described by a single exponential. After a single action potential the time constant of decay of GkCa,1 was 155 +/- 66 (+/- SD) ms. 4. Calcium influx was increased by adding TEA to the extracellular solution or by firing more than one action potential. As the calcium load was increased, both the peak amplitude and the time constant of decay of GkCa,1 increased. In cells impaled with ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA)-filled electrodes, the time constant of decay of GkCa,1 after a single action current was 71 +/- 19 ms. 5. A simple diffusion-based model that incorporates two intrinsic calcium buffers is developed that accounts for many of the properties of GkCa,1. It is concluded that the decay of GkCa,1 reflects the time course of removal of calcium that has entered the cell during the action potential.
    [Abstract] [Full Text] [Related] [New Search]