These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: DNA mutation detection in a polymer microfluidic network using temperature gradient gel electrophoresis. Author: Buch JS, Kimball C, Rosenberger F, Highsmith WE, DeVoe DL, Lee CS. Journal: Anal Chem; 2004 Feb 15; 76(4):874-81. PubMed ID: 14961715. Abstract: A miniaturized system for DNA mutation analysis, utilizing temperature gradient gel electrophoresis (TGGE) in a polycarbonate (PC) microfluidic device, is reported. TGGE reveals the presence of sequence heterogeneity in a given heteroduplex sample by introducing a thermal denaturing gradient that results in differences between the average electrophoretic mobilities of DNA sequence variants. Bulk heater assemblies are designed and employed to externally generate temperature gradients in spatial and temporal formats along the separation channels. TGGE analyses of model mutant DNA fragments, each containing a single base substitution, are achieved using both single- and 10-channel parallel measurements in a microfluidic platform. Additionally, a comprehensive polymer microfluidic device containing an integrated microheater and sensor array is developed and demonstrated for performing spatial TGGE for DNA mutation analysis. The device consists of two PC modular substrates mechanically bonded together. One substrate is embossed with microchannels, and the other contains a tapered microheater, lithographically patterned along with an array of temperature sensors. Compared with the external heating approaches, the integrated platform provides significant reduction in power requirement and thermal response time while establishing more accurate and highly effective control of the temperature gradient for achieving improved separation resolution.[Abstract] [Full Text] [Related] [New Search]