These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2 ameliorates ischemic acute renal failure. Author: Chatterjee PK, Patel NS, Cuzzocrea S, Brown PA, Stewart KN, Mota-Filipe H, Britti D, Eberhardt W, Pfeilschifter J, Thiemermann C. Journal: Cardiovasc Res; 2004 Feb 15; 61(3):630-43. PubMed ID: 14962493. Abstract: OBJECTIVE: Here we investigate the effects of the endogenous prostaglandin D2 metabolite 15-deoxy-Delta(12,14)-prostaglandin J2, on the renal dysfunction and injury caused by ischemia/reperfusion of the kidney. METHODS: Male Wistar rats, subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h, were administered 15-deoxy-Delta(12,14)-prostaglandin J2 (1 mg/kg, intravenously) 5 min prior to and again after 3 or 12 h reperfusion. RESULTS: 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduced (i) renal and tubular dysfunction (serum urea and creatinine levels, creatinine clearance, fractional excretion of Na+ (FENA)), (ii) tubular and reperfusion-injury (urinary N-acetyl-beta-D-glucosaminidase, aspartate aminotransferase (ASP) and gamma-glutamyltransferase (gamma-GT)) and (iii) histological evidence of renal injury. 15-deoxy-Delta(12,14)-prostaglandin J2 also improved renal function (plasma creatinine levels) and reduced the histological signs of renal injury (after 48 h reperfusion). Administration of 15-deoxy-Delta(12,14)-prostaglandin J2 markedly reduced the expression of inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 during reperfusion (determined using immunohistochemistry). Immunohistochemical analysis of p65 translocation and Western blot analysis of IkappaB-alpha degradation revealed that 15-deoxy-Delta(12,14)-prostaglandin J2 inhibited the activation of nuclear factor (NF)-kappaB in renal cells. Subsequently, 15d-PGJ2 was able to significantly reduce nitric oxide production during renal ischemia/reperfusion and by primary cultures of rat proximal tubular (PT) cells incubated with interferon-gamma and bacterial lipopolysaccharide (LPS) in combination. CONCLUSIONS: We demonstrate here, for the first time, that 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduces renal ischemia/reperfusion-injury via reduction of pro-inflammatory gene expression during reperfusion subsequent to the inhibition of the activation of NF-kappaB.[Abstract] [Full Text] [Related] [New Search]