These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Promotion of fibroblast activity by coating with hydrophobins in the beta-sheet end state. Author: Janssen MI, van Leeuwen MB, van Kooten TG, de Vries J, Dijkhuizen L, Wösten HA. Journal: Biomaterials; 2004 Jun; 25(14):2731-9. PubMed ID: 14962552. Abstract: Hydrophobins such as SC3 and SC4 of Schizophyllum commune self-assemble into an amphipathic film at hydrophilic/hydrophobic interfaces. These proteins can thus change the nature of surfaces, which makes them attractive candidates to improve physio- and physico-chemical properties of implant surfaces. At a hydrophobic solid, assembly of the hydrophobin is arrested in an intermediate state, called the alpha-helical state. The conversion to the stable beta-sheet end state can be induced by treating the solid at elevated temperatures in the presence of detergent. We here show that SC3 and SC4 in the alpha-helical state homogeneously cover Teflon sheets when coating was performed at 20 degrees C. However, when the protein was adsorbed at 80 degrees C aggregates were shown to bind tightly to the adsorbed hydrophobin film. The transition to the beta-sheet state created pores of about 50 nm in the SC3 and SC4 coatings when coating was performed at 20 degrees C. Cell growth and morphology on SC4 coatings was better than on SC3. In case of both hydrophobins, fibroblast growth and morphology was not influenced by the coating temperature or the conformation of the protein. However, in contrast to the alpha-helical state, the beta-sheet state of both SC3 and SC4 hardly, if at all, affected mitochondrial activity.[Abstract] [Full Text] [Related] [New Search]