These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Oriented astroglial cell growth on micropatterned polystyrene substrates.
    Author: Recknor JB, Recknor JC, Sakaguchi DS, Mallapragada SK.
    Journal: Biomaterials; 2004 Jun; 25(14):2753-67. PubMed ID: 14962554.
    Abstract:
    In an effort to develop a permissive environment for neural stem cell differentiation, directional growth of astrocytes has been achieved on polymer substrates in vitro. Manipulating a combination of physical and chemical cues, astrocyte adhesion and alignment in vitro were examined. To provide physical guidance, micropatterned polymer substrates of polystyrene (PS) were fabricated. Laminin was selectively adsorbed onto the grooves of the patterned surface. Rat type-1 astrocytes were seeded onto the micropatterned PS substrates, and the effects of substrate topography and the adsorption of laminin to the PS substrates on the behavior and morphology of the astrocytes were explored. The astrocytes were found to align parallel to the micropatterned grooves at initial seeding densities of approximately 7500, 13,000, and 20,000 cells/cm(2) due to the effects of the physical and chemical guidance mechanisms. Adsorbing laminin in the microgrooves of the micropatterned PS substrates improved cell adhesion and spreading of cytoskeletal filaments significantly. At these initial seeding densities, over 85% astrocyte alignment in the direction of the grooves was achieved on the micropatterned PS substrates with laminin adsorbed in the grooves. This combination of guidance cues has the potential to provide a permissive substrate for in vivo regeneration within the central nervous system.
    [Abstract] [Full Text] [Related] [New Search]