These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Apoptosis induced by staurosporine in ECV304 cells requires cell shrinkage and upregulation of Cl- conductance. Author: Porcelli AM, Ghelli A, Zanna C, Valente P, Ferroni S, Rugolo M. Journal: Cell Death Differ; 2004 Jun; 11(6):655-62. PubMed ID: 14963413. Abstract: We show that dysregulation of the Cl- homeostasis mediates the staurosporine-induced apoptotic cell death in human ECV304 cells. A pronounced apoptotic volume decrease (AVD), and an increase in plasma membrane Cl- conductance were early (<1 h) events following staurosporine challenge. Both processes were involved in apoptotic death, as demonstrated by the observation that the Cl- channel blocker phloretin inhibited both the staurosporine-evoked Cl- current and AVD, and preserved cell viability. Prolonged incubation (>2 h) with staurosporine caused a decrease in intracellular pH, which, however, was not required for the progression of the apoptotic process, because inhibitors of proton extrusion pathways, which lowered cytoplasmic pH, failed to inhibit both caspase-3 activation and DNA laddering. Moreover, clamping the cytosolic pH to an alkaline value did not prevent the apoptotic cell death. Collectively, these data demonstrate that staurosporine-mediated apoptosis of ECV304 cells is caused by the upregulation of Cl- channel activity and subsequent AVD, but is independent of intracellular acidification.[Abstract] [Full Text] [Related] [New Search]