These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Is the number of antennal plate organs (sensilla placodea) greater in hygienic than in non-hygienic Africanized honey bees?
    Author: Gramacho KP, Gonçalves LS, Stort AC, Noronha AB.
    Journal: Genet Mol Res; 2003 Sep 30; 2(3):309-16. PubMed ID: 14966679.
    Abstract:
    Hygienic behavior is a desirable trait in honey bees (Apis mellifera L.), as hygienic bees quickly remove diseased brood, interrupting the infectious cycle. Hygienic lines of honey bees appear to be more sensitive to the odors of dead and diseased honey bee brood, and Africanized honey bees are generally more hygienic than are European honey bees. We compared the number of sensilla placodea, antennal sensory structures involved in the perception of odor, in 10 bees from each of six hygienic and four non-hygienic colonies of Africanized honey bees. The sensilla placodea of three of the terminal segments (flagellomeres) of the right antenna of each bee were counted with a scanning electron microscope. There were no significant differences in the mean numbers of sensilla placodea between the hygienic and non-hygienic bees, though the variance was higher in the hygienic group. Flagellomere 4 had significantly more sensilla placodea than flagellomeres 6 and 8. However, there was no significant difference between the other two flagellomeres. As hygienic bees are capable of identifying dead, injured, or infested brood inside a capped brood cell, sensilla placodea probably have an important role in enabling worker bees to sense sick brood. However, we did not find greater numbers of this sensory structure in the antennae of hygienic, compared to non-hygienic Africanized honey bees.
    [Abstract] [Full Text] [Related] [New Search]