These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Does VDAC insert into membranes in random orientation? Author: Marques EJ, Carneiro CM, Silva AS, Krasilnikov OV. Journal: Biochim Biophys Acta; 2004 Feb 10; 1661(1):68-77. PubMed ID: 14967476. Abstract: It is widely accepted that voltage-dependent anion-selective channel (VDAC) inserts into planar lipid bilayers in a random orientation. This is in contrast to the well-documented oriented insertion of various channel-forming proteins. Because of the potential importance of this issue, we have examined the orientation of VDAC inserted in membranes. The time constants of the VDAC-current relaxation in response to applied positive and negative voltage pulses were used to characterize the channel orientation. We have found that VDAC channels can be separated into two groups according to differences in the time constant ratio. The difference in time constant ratio between the two main groups of VDAC channels was quantitative, and not qualitative as would be expected for opposite topologies. This finding allows us to hypothesize that both groups of VDAC channels possess a qualitatively similar asymmetry with respect to the localization of voltage-gated domains and, consequently, with respect to its entire molecular structure. The probability of having each type of VDAC channel conformation is predetermined by the protein structure in aqueous solution. A striking resemblance between asymmetry in voltage sensitivity at the single-channel and multi-channel levels was also demonstrated. The first inserted channel seems to direct subsequent insertions of channels with a similar conformation.[Abstract] [Full Text] [Related] [New Search]