These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Somatosensory evoked potentials/fields--exploration of brain function]. Author: Inoue K, Shirai T, Harada T, Mimori Y, Matsumoto M. Journal: Rinsho Byori; 2004 Jan; 52(1):77-80. PubMed ID: 14968564. Abstract: We have summarized the history of electroencephalography(EEG) since 1875, when a paper by Richard Caton was published describing the first EEG recordings in animals. Somatosensory evoked potentials (SEPs) were recorded by George Dawson in 1951. Thereafter, SEPs were developed for clinical use with other evoked potentials such as auditory evoked potentials(VEPs). To understand evoked potentials, related mechanism of induction of far-fields-potentials(FFP) following stimulation of the median nerve has been discussed. SEPs consisted of P9, N9, N10, P11, N11, N13, P13, P14, N18, N20 and P20/P22. Scalp recorded P9 FFP arises from the distal portion of the branchial plexus as reflected by N9 stationary negative potential recorded over the stimulated arm. Cervical N11 and N13 arise from the root entry zone and dorsal horn, respectively. Scalp recorded P13, P14 and N18 FFP originate from the brainstem. In this communication, magnetoencephalography(MEG) and results of one of our recent studies on somatosensory evoked fields(SEFs) are also discussed. One of the important features of MEG is that magnetic signals detected outside the head arise mainly from cortical currents tangential to the skull. Since the net postsynaptic current follows the orientation of cortical pyramidal cells, the MEG signals mainly reflect activity of the fissural cortex, whereas radial current may remain undetected. In our study, we demonstrated SEFs elicited by compression and decompression of a subject's glabrous skin by a human operator. Their dipoles were tangentially oriented from the frontal lobe to parietal lobe.[Abstract] [Full Text] [Related] [New Search]