These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Determination of airborne carbonyls: comparison of a thermal desorption/GC method with the standard DNPH/HPLC method.
    Author: Ho SS, Yu JZ.
    Journal: Environ Sci Technol; 2004 Feb 01; 38(3):862-70. PubMed ID: 14968875.
    Abstract:
    The standard method for the determination of gaseous carbonyls is to collect carbonyls onto 2,4-dinitrophenyl hydrazine (DNPH) coated solid sorbent followed by solvent extraction of the solid sorbent and analysis of the derivatives using high-pressure liquid chromatography (HPLC). This paper describes a newly developed approach that involves collection of the carbonyls onto pentafluorophenyl hydrazine (PFPH) coated solid sorbents followed by thermal desorption and gas chromatographic (GC) analysis of the PFPH derivatives with mass spectrometric (MS) detection. Sampling tubes loaded with 510 nmol of PFPH on Tenax sorbent effectively collect gaseous carbonyls, including formaldehyde, acetaldehyde, propanal, butanal, heptanal, octanal, acrolein, 2-furfural, benzaldehyde, p-tolualdehyde, glyoxal, and methylglyoxal, at a flow rate of at least up to 100 mL/min. All of the tested carbonyls are shown to have method detection limits (MDLs) of subnanomoles per sampling tube, corresponding to air concentrations of <0.3 ppbv for a sampled volume of 24 L. These limits are 2-12 times lower than those that can be obtained using the DNPH/HPLC method. The improvement of MDLs is especially pronounced for carbonyls larger than formaldehyde and acetaldehyde. The PFPH/GC method also offers better peak separation and more sensitive and specific detection through the use of MS detection. Comparison studies on ambient samples and kitchen exhaust samples have demonstrated that the two methods do not yield systematic differences in concentrations of the carbonyls that are above their respective MDLs in both methods, including formaldehyde, acetaldehyde, acrolein, and butanal. The lower MDLs afforded by the PFPH/ GC method also enable the determination of a few more carbonyls in both applications.
    [Abstract] [Full Text] [Related] [New Search]