These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selective brain hypothermia protects against hypoxic-ischemic injury in newborn rats by reducing hydroxyl radical production. Author: Hashimoto T, Yonetani M, Nakamura H. Journal: Kobe J Med Sci; 2003; 49(3-4):83-91. PubMed ID: 14970751. Abstract: We hypothesized that selective brain hypothermia (SBHT) decreases production of hydroxyl radicals (*OH) induced by hypoxia-ischemia (H-I) and reperfusion and attenuates neuronal damage in neonatal rat brain. Anesthetized 7-day-old rats were divided into a normothermia (NT) group (n=6) and a SBHT group (n=7) and subjected to 90-min H-I, followed by a 90-min recovery period. Brain temperature (BT) was regulated by a water-cooled metallic plate placed under the head. The BT of the SBHT group was set at 31.0+/-1.0 degrees C during the H-I and recovery period. Microdialysis and the salicylate-trapping method were used to detect *OH in the striatum. Neuronal damage was quantified by counting the surviving neurons at 120 hr after reperfusion. The NT group had significant increases in 2,3-dihydroxybenzoic acid (DHBA) (223+/-166%) and 2,5-DHBA (321+/-153%) above baseline levels. The increases in 2,3-DHBA (127+/-40%) and 2,5-DHBA (133+/-33%) were significantly lower (p < 0.01) in the SBHT group. The number of surviving neurons was decreased significantly in the NT group but not in the SBHT group. We conclude that SBHT reduces *OH production during H-I and reperfusion and has protective effects against neuronal damage.[Abstract] [Full Text] [Related] [New Search]