These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The interferon regulatory factor ICSBP/IRF-8 in combination with PU.1 up-regulates expression of tumor suppressor p15(Ink4b) in murine myeloid cells. Author: Schmidt M, Bies J, Tamura T, Ozato K, Wolff L. Journal: Blood; 2004 Jun 01; 103(11):4142-9. PubMed ID: 14976051. Abstract: CDKN2B (INK4B), which encodes the cyclin-dependent kinase inhibitor p15(INK4b), is up-regulated by many cytokines found in hematopoietic environments in vivo. In human acute myeloid leukemias (AMLs), it is inactivated with high frequency. To gain insight into the regulatory pathways leading to the normal activation of p15(Ink4b) expression, we examined interferon beta (IFNbeta)-induced transcription. Using reporter gene assays in murine myeloid cells M1, we determined that a 328-bp fragment, located 117 to 443 bp upstream of the translation initiation site, was sufficient to activate transcription. Both the interferon consensus sequence-binding protein/interferon regulatory factor 8 (ICSBP/IRF-8) and PU.1 were able to increase transcription from this region. It was determined that both ICSBP and PU.1 must bind to DNA to form a stable PU.1/ICSBP binding complex. Interestingly, introduction of the ICSBP into ICSBP-null Tot2 cells led to a significant increase in p15(Ink4b) RNA expression. This regulation of the Ink4b promoter is apparently myeloid specific because both ICSBP and PU.1 are myeloid commitment factors. Importantly, this provides a mechanism to explain in part the tumor suppressor activity of ICSBP, since ICSBP-deficient mice develop a chronic myelogenous leukemia (CML)-like disease and a high percentage of human AML and CML lack ICSBP transcripts.[Abstract] [Full Text] [Related] [New Search]