These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: An engineered pathway for the formation of protein disulfide bonds.
    Author: Masip L, Pan JL, Haldar S, Penner-Hahn JE, DeLisa MP, Georgiou G, Bardwell JC, Collet JF.
    Journal: Science; 2004 Feb 20; 303(5661):1185-9. PubMed ID: 14976313.
    Abstract:
    We have engineered a pathway for the formation of disulfide bonds. By imposing evolutionary pressure, we isolated mutations that changed thioredoxin, which is a monomeric disulfide reductase, into a [2Fe-2S] bridged dimer capable of catalyzing O2-dependent sulfhydryl oxidation in vitro. Expression of the mutant protein in Escherichia coli with oxidizing cytoplasm and secretion via the Tat pathway restored disulfide bond formation in strains that lacked the complete periplasmic oxidative machinery (DsbA and DsbB). The evolution of [2Fe-2S] thioredoxin illustrates how mutations within an existing scaffold can add a cofactor and markedly change protein function.
    [Abstract] [Full Text] [Related] [New Search]