These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic modeling of beta-chloroprene metabolism: I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans. Author: Himmelstein MW, Carpenter SC, Hinderliter PM. Journal: Toxicol Sci; 2004 May; 79(1):18-27. PubMed ID: 14976339. Abstract: Beta-chloroprene (2-chloro-1,3-butadiene, CD) is carcinogenic by inhalation exposure to B6C3F1 mice and Fischer F344 rats but not to Wistar rats or Syrian hamsters. The initial step in metabolism is oxidation, forming a stable epoxide (1-chloroethenyl)oxirane (1-CEO), a genotoxicant that might be involved in rodent tumorigenicity. This study investigated the species-dependent in vitro kinetics of CD oxidation and subsequent 1-CEO metabolism by microsomal epoxide hydrolase and cytosolic glutathione S-transferases in liver and lung, tissues that are prone to tumor induction. Estimates for Vmax and Km for cytochrome P450-dependent oxidation of CD in liver microsomes ranged from 0.068 to 0.29 micromol/h/mg protein and 0.53 to 1.33 microM, respectively. Oxidation (Vmax/Km) of CD in liver was slightly faster in the mouse and hamster than in rats or humans. In lung microsomes, Vmax/Km was much greater for mice compared with the other species. The Vmax and Km estimates for microsomal epoxide hydrolase activity toward 1-CEO ranged from 0.11 to 3.66 micromol/h/mg protein and 20.9 to 187.6 microM, respectively, across tissues and species. Hydrolysis (Vmax/Km) of 1-CEO in liver and lung microsomes was faster for the human and hamster than for rat or mouse. The Vmax/Km in liver was 3 to 11 times greater than in lung. 1-CEO formation from CD was measured in liver microsomes and was estimated to be 2-5% of the total CD oxidation. Glutathione S-transferase-mediated metabolism of 1-CEO in cytosolic tissue fractions was described as a pseudo-second order reaction; rates were 0.0016-0.0068/h/mg cytosolic protein in liver and 0.00056-0.0022 h/mg in lung. The observed differences in metabolism are relevant to understanding species differences in sensitivity to CD-induced liver and lung tumorigenicity.[Abstract] [Full Text] [Related] [New Search]