These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Prediction of torsade-causing potential of drugs by support vector machine approach. Author: Yap CW, Cai CZ, Xue Y, Chen YZ. Journal: Toxicol Sci; 2004 May; 79(1):170-7. PubMed ID: 14976348. Abstract: In an effort to facilitate drug discovery, computational methods for facilitating the prediction of various adverse drug reactions (ADRs) have been developed. So far, attention has not been sufficiently paid to the development of methods for the prediction of serious ADRs that occur less frequently. Some of these ADRs, such as torsade de pointes (TdP), are important issues in the approval of drugs for certain diseases. Thus there is a need to develop tools for facilitating the prediction of these ADRs. This work explores the use of a statistical learning method, support vector machine (SVM), for TdP prediction. TdP involves multiple mechanisms and SVM is a method suitable for such a problem. Our SVM classification system used a set of linear solvation energy relationship (LSER) descriptors and was optimized by leave-one-out cross validation procedure. Its prediction accuracy was evaluated by using an independent set of agents and by comparison with results obtained from other commonly used classification methods using the same dataset and optimization procedure. The accuracies for the SVM prediction of TdP-causing agents and non-TdP-causing agents are 97.4 and 84.6% respectively; one is substantially improved against and the other is comparable to the results obtained by other classification methods useful for multiple-mechanism prediction problems. This indicates the potential of SVM in facilitating the prediction of TdP-causing risk of small molecules and perhaps other ADRs that involve multiple mechanisms.[Abstract] [Full Text] [Related] [New Search]