These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Activation of glutamate transporters in rods inhibits presynaptic calcium currents. Author: Rabl K, Bryson EJ, Thoreson WB. Journal: Vis Neurosci; 2003; 20(5):557-66. PubMed ID: 14977334. Abstract: We found that L-glutamate (L-Glu) inhibits L-type Ca2+ currents (ICa) in rod photoreceptors. This inhibition was studied in isolated rods or rods in retinal slices from tiger salamander using perforated patch whole cell recordings and Cl(-)-imaging techniques. Application of L-Glu inhibited ICa by approximately 20% at 0.1 mM and approximately 35% at 1 mM. L-Glu also produced an inward current that reversed around ECl. The metabotropic glutamate receptor (mGluR) agonists t-ADA (Group I), DCG-IV (Group II), and L-AP4 (Group III) had no effect on ICa. However, the glutamate transport inhibitor, TBOA (0.1 mM), prevented L-Glu from inhibiting ICa. D-aspartate (D-Asp), a glutamate transporter substrate, also inhibited ICa with significantly more inhibition at 1 mM than 0.1 mM. Using Cl imaging, L-Glu (0.1-1 mM) and D-Asp (0.1-1 mM) were found to stimulate a Cl- efflux from terminals of isolated rods whereas the ionotropic glutamate receptor agonists NMDA, AMPA, and kainate and the mGluR agonist, 1S,3R-ACPD, did not. Glutamate-evoked Cl- effluxes were blocked by the glutamate transport inhibitors TBOA and DHKA. Cl- efflux inhibits Ca2+ channel activity in rod terminals (Thoreson et al. (2000), Visual Neuroscience 17, 197). Consistent with the possibility that glutamate-evoked Cl- efflux may play a role in the inhibition, reducing intraterminal Cl- prevented L-Glu from inhibiting ICa. In summary, the results indicate that activation of glutamate transporters inhibits ICa in rods possibly as a consequence of Cl- efflux. The neurotransmitter L-Glu released from rod terminals might thus provide a negative feedback signal to inhibit further L-Glu release.[Abstract] [Full Text] [Related] [New Search]