These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Different potentials of gamma delta T cell subsets in regulating airway responsiveness: V gamma 1+ cells, but not V gamma 4+ cells, promote airway hyperreactivity, Th2 cytokines, and airway inflammation. Author: Hahn YS, Taube C, Jin N, Sharp L, Wands JM, Aydintug MK, Lahn M, Huber SA, O'Brien RL, Gelfand EW, Born WK. Journal: J Immunol; 2004 Mar 01; 172(5):2894-902. PubMed ID: 14978091. Abstract: Allergic airway inflammation and hyperreactivity are modulated by gammadelta T cells, but different experimental parameters can influence the effects observed. For example, in sensitized C57BL/6 and BALB/c mice, transient depletion of all TCR-delta(+) cells just before airway challenge resulted in airway hyperresponsiveness (AHR), but caused hyporesponsiveness when initiated before i.p. sensitization. Vgamma4(+) gammadelta T cells strongly suppressed AHR; their depletion relieved suppression when initiated before challenge, but not before sensitization, and they suppressed AHR when transferred before challenge into sensitized TCR-Vgamma4(-/-)/6(-/-) mice. In contrast, Vgamma1(+) gammadelta T cells enhanced AHR and airway inflammation. In normal mice (C57BL/6 and BALB/c), enhancement of AHR was abrogated only when these cells were depleted before sensitization, but not before challenge, and with regard to airway inflammation, this effect was limited to C57BL/6 mice. However, Vgamma1(+) gammadelta T cells enhanced AHR when transferred before challenge into sensitized B6.TCR-delta(-/-) mice. In this study Vgamma1(+) cells also increased levels of Th2 cytokines in the airways and, to a lesser extent, lung eosinophil numbers. Thus, Vgamma4(+) cells suppress AHR, and Vgamma1(+) cells enhance AHR and airway inflammation under defined experimental conditions. These findings show how gammadelta T cells can be both inhibitors and enhancers of AHR and airway inflammation, and they provide further support for the hypothesis that TCR expression and function cosegregate in gammadelta T cells.[Abstract] [Full Text] [Related] [New Search]