These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation.
    Author: Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA.
    Journal: Mol Pharmacol; 2004 Mar; 65(3):711-9. PubMed ID: 14978250.
    Abstract:
    The present study investigates mRNA and protein levels of A3 adenosine receptors in resting (R) and activated (A) human lymphocytes. The receptors were evaluated by the antagonist radioligand [3H]5-N-(4-methoxyphenyl-carbamoyl)amino-8-propyl-2(2furyl)-pyrazolo-[4,3e]-1,2,4-triazolo-[1,5-c]-pyrimidine ([3H]MRE 3008F20), which yielded Bmax values of 125 +/- 15 and 225 +/- 23 fmol/mg of protein and KD values of 1.79 +/- 0.30 and 1.85 +/- 0.25 nM in R and A cells, respectively. The protein seems to be induced with remarkable rapidity starting at 15 min and reaches a plateau at 30 min. Western blot assays revealed that the up-regulation of the A3 subtype after lymphocyte activation was caused by an increase in an enriched CD4+ cell fraction. Real-time reverse transcription-polymerase chain reaction experiments confirmed the rapid increase of A3 mRNA after T cell activation. Competition of radioligand binding by adenosine ligands displayed a rank order of potency typical of the A3 subtype. Thermodynamic data indicated that the binding is enthalpy- and entropy-driven in both R and A cells, suggesting that the activation process does not involve, at a molecular level, receptor alterations leading to modifications in the A3-related binding mechanisms. Functionally, the up-regulation of A3 adenosine receptors in A versus R cells corresponded to a potency increase of the A3 agonist N6-(3-iodo-benzyl)-2-chloro-adenosine-5'-N-methyluronamide in inhibiting cAMP accumulation (IC50=1.5 +/- 0.4 and 2.7 +/- 0.3 nM, respectively); this effect was antagonized by MRE 3008F20 (IC50=5.0 +/- 0.3 nM). In conclusion, our results provide, for the first time, an in-depth investigation of A3 receptors in human lymphocytes and demonstrate that, under activating conditions, they are up-regulated and may contribute to the effects triggered by adenosine.
    [Abstract] [Full Text] [Related] [New Search]