These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Analysis of the Drosophila betaPS subunit indicates that regulation of integrin activity is a primal function of the C8-C9 loop.
    Author: Bunch TA, Miller SW, Brower DL.
    Journal: Exp Cell Res; 2004 Mar 10; 294(1):118-29. PubMed ID: 14980507.
    Abstract:
    Integrin-ligand interactions can be influenced by the sequence in a disulfide-bridged loop between the 8th and 9th beta subunit cysteines. Previous experiments are consistent with C8-C9 loop residues being involved in direct ligand-integrin interactions and/or being important in heterodimer regulation. In betaPS from Drosophila melanogaster and three other dipterans, the C8-C9 loop consists of only two amino acids, and exists in two forms that arise by differential splicing of exon 4. In these species, the betaPS4A isoform has an acidic residue in the first loop position (C8+1), with an alanine or proline in the corresponding position of betaPS4B. Mutations in both isoforms (in combination with alphaPS2) can reduce cell spreading during normal growth, but function is generally restored under conditions that enhance integrin activation. Replacement of the betaPS4A acidic residue with a basic lysine has relatively modest effects on integrin function. Spread cells bearing C8-C9 mutations tend to become less elongated, with reduced frequencies of actin stress fibers. The results indicate that even a minimal, two-residue C8-C9 loop contains structural information that can differentially regulate integrin activity and/or integrin signaling, and that this regulation does not rely on direct molecular interactions involving the variable C8+1 side chains.
    [Abstract] [Full Text] [Related] [New Search]