These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Empirical relationships between isotope-edited IR spectra and helix geometry in model peptides. Author: Barber-Armstrong W, Donaldson T, Wijesooriya H, Silva RA, Decatur SM. Journal: J Am Chem Soc; 2004 Mar 03; 126(8):2339-45. PubMed ID: 14982437. Abstract: Infrared spectroscopy (IR) is commonly used to study secondary structure of both peptides and proteins. The amide I band is very sensitive to peptide secondary structure, and the conformation of a peptide can be probed at the residue level by introducing site-specific isotope-labels into the peptide backbone. The replacement of a carbonyl (12)C with a (13)C results in a approximately 40 cm(-1) shift in the amide I' band. The amide I bands of specifically labeled helices should vary systematically as a function of the number and relative spacing of the labeled residues; thus one should be able to describe the conformation of a polypeptide in substantial detail by probing the changes in IR spectra as a function of the number and positioning of isotope labels. In this study, we report IR spectra of a series of differently labeled helical peptides. A series of 25mer peptides were synthesized based on the repeat sequence (AAAAK)(n). We have varied the number and spacing of the labels on each peptide and studied the changes in the (12)C and (13)C amide I' band due to label position. Our results indicate that changing the number of labels changes the frequency and intensity of both the (12)C and the (13)C amide mode. We also found that varying the spacing between labels causes these amide peaks to shift. Isotope labeling, combined with IR spectroscopy and theoretical predictions, may generate a description of peptide backbone conformations at the residue level.[Abstract] [Full Text] [Related] [New Search]