These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Peroxisomal fatty acid oxidation is a substantial source of the acetyl moiety of malonyl-CoA in rat heart. Author: Reszko AE, Kasumov T, David F, Jobbins KA, Thomas KR, Hoppel CL, Brunengraber H, Des Rosiers C. Journal: J Biol Chem; 2004 May 07; 279(19):19574-9. PubMed ID: 14982940. Abstract: Little is known about the sources of acetyl-CoA used for the synthesis of malonyl-CoA, a key regulator of mitochondrial fatty acid oxidation in the heart. In perfused rat hearts, we previously showed that malonyl-CoA is labeled from both carbohydrates and fatty acids. This study was aimed at assessing the mechanisms of incorporation of fatty acid carbons into malonyl-CoA. Rat hearts were perfused with glucose, lactate, pyruvate, and a fatty acid (palmitate, oleate or docosanoate). In each experiment, substrates were (13)C-labeled to yield singly or/and doubly labeled acetyl-CoA. The mass isotopomer distribution of malonyl-CoA was compared with that of the acetyl moiety of citrate, which reflects mitochondrial acetyl-CoA. In the presence of labeled glucose or lactate/pyruvate, the (13)C labeling of malonyl-CoA was up to 2-fold lower than that of mitochondrial acetyl-CoA. However, in the presence of a fatty acid labeled in its first acetyl moiety, the (13)C labeling of malonyl-CoA was up to 10-fold higher than that of mitochondrial acetyl-CoA. The labeling of malonyl-CoA and of the acetyl moiety of citrate is compatible with peroxisomal beta-oxidation forming C(12) and C(14) acyl-CoAs and contributing >50% of the fatty acid-derived acetyl groups that end up in malonyl-CoA. This fraction increases with the fatty acid chain length. By supplying acetyl-CoA for malonyl-CoA synthesis, peroxisomal beta-oxidation may participate in the control of mitochondrial fatty acid oxidation in the heart. In addition, this pathway may supply some acyl groups used in protein acylation, which is increasingly recognized as an important regulatory mechanism for many biochemical processes.[Abstract] [Full Text] [Related] [New Search]