These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Light adaptation of bacteriorhodopsin correlates with dielectric spectral kinetics in purple membrane. Author: Mostafa HI. Journal: Biochem Biophys Res Commun; 2004 Mar 19; 315(4):857-65. PubMed ID: 14985091. Abstract: The retinal protein, bacteriorhodopsin (bR), has several potential bioelectronic applications and it is considered as a model for G-protein coupled receptors. Its electrical parameters, therefore, deserve particular attention. Such parameters could be determined by virtue of studying its dielectric spectrum in the low frequency range (20 Hz-1 MHz). The kinetics of dark-light adaptation of bR is reported in terms of electrical parameters of the purple membrane (PM) containing bR. The data have exhibited sudden pronounced increase in the ac-conductivity, upon illuminating the dark-adapted bR (DA-bR), which may be considered in further implications of bR for biotechnological applications. These changes turned out to be composed of, at least, two growing exponential components: one relatively fast followed by slower one. Their lifetime ratio exhibited decreases with increasing the frequency; meanwhile, their amplitude ratio displayed very exciting behavior at significant frequencies. This may correlate the kinetics of light adaptation to relaxations in PM. Moreover, the light adaptation has been observed to cause initial fast and large decreases in dc-conductivity with subsequent slower and smaller decreases. Changing the conductivity during the time of light adaptation reflects changes in the surface charge of the PM. The lifetimes of these events, therefore, help follow the kinetics of the pathway of conformational changes that might be occurring during light adaptation. The dipole moment (permanent and induced) of PM, in addition to, its size showed one exponential growth of comparable lifetime (approximately 7 min) during the light adaptation. The variation in PM size from dark to light state should be in keeping with that diffusion may influence the three-dimensional data storage in data processing based on bR.[Abstract] [Full Text] [Related] [New Search]