These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CYP2C subfamily, primarily CYP2C9, catalyses the enantioselective demethylation of the endocrine disruptor pesticide methoxychlor in human liver microsomes: use of inhibitory monoclonal antibodies in P450 identification. Author: Hu Y, Krausz K, Gelboin HV, Kupfer D. Journal: Xenobiotica; 2004 Feb; 34(2):117-32. PubMed ID: 14985143. Abstract: 1. The endocrine disruptor pesticide methoxychlor undergoes O-demethylation by mammalian liver microsomes forming chiral mono-phenolic (1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane, i.e. mono-OH-M) and achiral bis-phenolic oestrogenic metabolites. Human liver microsomes (HLM) generated primarily the S-mono-OH-M. 2. Inhibitory monoclonal antibodies (MAb) identified those P450s catalysing the enantioselective O-demethylation of methoxychlor. In HLM, O-demethylation was inhibited by MAb anti-2C9 (30-40%), diminishing the per cent of S-mono-OH-M from about 80 to 55-60%. MAb anti-CYP1A2, 2A6, 2B6, 2C8, 2C19, 2D6 and 3A4 did not affect the demethylation rate in HLM. Nevertheless, MAb anti-CYP1A2 decreased the formation of R-mono-OH-M from 21-23 to 10-17%, indicating that CYP1A2 exhibits a role in generating the R-enantiomer. 3. Among cDNA-expressed human P450s (supersomes), CYP2C19 was the most active in demethylation, but in HLM, CYP2C19 appeared inactive (no inhibition by MAb anti-CYP2C19). There was a substantial difference in the per cent inhibition of demethylation by MAb anti-CYP2C9 and anti-rat CYP2C (MAb inhibiting all human CYP2C forms) and in altering the enantioselectivity, suggesting that demethylation by combined CYP2C8, 2C18 and 2C19 was significant (20-30%). 4. Polymorphism of methoxychlor demethylation was examined with supersomes and HLM-expressing CYP2C9 allelic variants. CYP2C9*1 and 2C9*2 were highly active; however, CYP2C9*3 appeared inactive.[Abstract] [Full Text] [Related] [New Search]