These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sox6 overexpression causes cellular aggregation and the neuronal differentiation of P19 embryonic carcinoma cells in the absence of retinoic acid.
    Author: Hamada-Kanazawa M, Ishikawa K, Nomoto K, Uozumi T, Kawai Y, Narahara M, Miyake M.
    Journal: FEBS Lett; 2004 Feb 27; 560(1-3):192-8. PubMed ID: 14988021.
    Abstract:
    The Sox6 gene is a member of the Sox gene family that encodes transcription factors. Previous studies have suggested that Sox6 plays an important role in the development of the central nervous system. Aggregation of embryonic carcinoma P19 cells with retinoic acid (RA) results in the development of neurons, glia and fibroblast-like cells. In this report, we have shown that Sox6 mRNA increased rapidly in P19 cells during RA induction and then decreased during the differentiation of P19 into neuronal cells. To explore the possible roles of Sox6 during this process, stably Sox6-overexpressing P19 cell lines (P19[Sox6]) were established. These P19[Sox6] had acquired both characteristics of the wild-type P19 induced by RA. First, P19[Sox6] cells showed a marked cellular aggregation in the absence of RA. Second, P19[Sox6] could differentiate into microtubule-associated protein 2 (MAP2)-expressing neuronal cells in the absence of RA. Sox6 expression could cause the activation of endogenous genes including the neuronal transcription factor Mash-1, the neuronal development-related gene Wnt-1, the neuron-specific cell adhesion molecule N-cadherin, and the neuron-specific protein MAP2, resulting in neurogenesis. Moreover, E-cadherin, a major cell adhesion molecule of wild-type P19, was strongly induced by Sox6, resulting in cellular aggregation without RA. Thus Sox6 may play a critical role in cellular aggregation and neuronal differentiation of P19 cells.
    [Abstract] [Full Text] [Related] [New Search]