These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protein backbone angle prediction with machine learning approaches.
    Author: Kuang R, Leslie CS, Yang AS.
    Journal: Bioinformatics; 2004 Jul 10; 20(10):1612-21. PubMed ID: 14988121.
    Abstract:
    MOTIVATION: Protein backbone torsion angle prediction provides useful local structural information that goes beyond conventional three-state (alpha, beta and coil) secondary structure predictions. Accurate prediction of protein backbone torsion angles will substantially improve modeling procedures for local structures of protein sequence segments, especially in modeling loop conformations that do not form regular structures as in alpha-helices or beta-strands. RESULTS: We have devised two novel automated methods in protein backbone conformational state prediction: one method is based on support vector machines (SVMs); the other method combines a standard feed-forward back-propagation artificial neural network (NN) with a local structure-based sequence profile database (LSBSP1). Extensive benchmark experiments demonstrate that both methods have improved the prediction accuracy rate over the previously published methods for conformation state prediction when using an alphabet of three or four states. AVAILABILITY: LSBSP1 and the NN algorithm have been implemented in PrISM.1, which is available from www.columbia.edu/~ay1/. SUPPLEMENTARY INFORMATION: Supplementary data for the SVM method can be downloaded from the Website www.cs.columbia.edu/compbio/backbone.
    [Abstract] [Full Text] [Related] [New Search]