These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Chronic cold exposure increases skeletal muscle oxidative structure and function in Monodelphis domestica, a marsupial lacking brown adipose tissue.
    Author: Schaeffer PJ, Villarin JJ, Lindstedt SL.
    Journal: Physiol Biochem Zool; 2003; 76(6):877-87. PubMed ID: 14988803.
    Abstract:
    Monodelphis domestica (Marsupialia: Didelphidae) was used as a model animal to investigate and compare muscle adaptation to exercise training and cold exposure. The experimental treatment consisted of four groups of animals: either warm or cold acclimation temperature and with or without endurance exercise training. Maximal aerobic capacity during a running VO2max test in the warm-exercised or cold-exposed (with or without exercise) groups was about 130 mL O(2)/kg/min, significantly higher than the warm-acclimated controls at 113.5 mL O(2)/kg/min. Similarly, during an acute cold challenge (VO2summit), maximal aerobic capacity was higher in these three experimental groups at approximately 95 mL O(2)/kg/min compared with 80.4 mL O(2)/kg/min in warm-acclimated controls. Respiratory exchange ratio was significantly lower (0.89-0.68), whereas relative heart mass (0.52%-0.73%) and whole-body muscle mitochondrial volume density (2.59 to 3.04 cm(3)) were significantly higher following cold exposure. Chronic cold exposure was a stronger stimulus than endurance exercise training for tissue-specific adaptations. Although chronic cold exposure and endurance exercise are distinct challenges, physiological adaptations to each overlap such that the capacities for aerobic performance in response to both cold exposure and running are increased by either or both treatments.
    [Abstract] [Full Text] [Related] [New Search]