These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crystal structure and n.m.r. analysis of lactulose trihydrate. Author: Jeffrey GA, Huang DB, Pfeffer PE, Dudley RL, Hicks KB, Nitsch E. Journal: Carbohydr Res; 1992 Mar 16; 226(1):29-42. PubMed ID: 1499020. Abstract: The 13C CPMAS n.m.r. spectrum of 4-O-beta-D-galactopyranosyl-D-fructose (lactulose) trihydrate, C12H22O11.3 H2O, identifies the isomer in the crystals as the beta-furanose. This is confirmed by a crystal structure analysis, using CuK alpha X-ray data at room temperature. The space group is P212121, with Z = 4 and cell dimensions a = 9.6251(3), b = 12.8096(3), c = 17.7563(4) A. The structure was refined to R = 0.031 and Rw 0.025 for 1929 observed structure amplitudes. All the hydrogen atoms were unambigously located on difference syntheses. The conformation of the pyranose ring is the normal 4C1 chair and that of the furanose ring is 4T3. The 1----4 linkage torsion angles are O-5'-C-1'-O-1'-C-4 = 79.9(2) degrees and C-1'-O-1'-C-4-C-5 = -170.3(2) degrees. All hydroxyls, ring and glycosidic oxygens, and water molecules are involved in the hydrogen bonding, which consists of infinite chains linked together by water molecules to form a three-dimensional network. There is a three-centered intramolecular, interresidue hydrogen bond from O-3-H to O-5' and O-6'. The n.m.r. spectrum of the amorphous, dehydrated trihydrate suggests the occurrence of a solid-state reaction forming the same isomeric mixture as was observed in crystalline anhydrous lactulose, although the mutarotation of the trihydrate when dissolved in Me2SO is very slow.[Abstract] [Full Text] [Related] [New Search]