These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mechanisms involved in methylmercuric chloride (MeHgCl)-induced suppression of human neutrophil apoptosis. Author: Moisan E, Kouassi E, Girard D. Journal: Hum Exp Toxicol; 2003 Dec; 22(12):629-37. PubMed ID: 14992324. Abstract: We have previously demonstrated that concentrations of 1-10 microM of methylmercuric chloride (MeHgCl) that are cytotoxic to monocytes-macrophages can curiously inhibit neutrophil apoptosis by a yet unknown mechanism. In the present study, we demonstrate that, as with the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF), a classical inhibitor of neutrophil apoptosis, treatment of cells with 5 microM MeHgCl induces de novo protein synthesis and prevents the loss of expression of the antiapoptotic Mcl-1 protein. The expression of the cytoskeletal proteins gelsolin, paxillin and vinculin was similar in MeHgCl- or GM-CSF-induced suppression of apoptosis. However, MeHgCl prevents the degradation of vimentin differently than GM-CSF. Apoptosis was further confirmed by flow cytometry (FITC annexin-V), and by monitoring CD16 cell surface expression. Curiously, unlike GM-CSF, MeHgCl did not prevent CD16 shedding. We conclude that, like GM-CSF, MeHgCl can delay neutrophil apoptosis by inducing de novo protein synthesis and by preventing the loss of the antiapoptotic Mcl-1 protein. However, unlike GM-CSF, MeHgCl induces an atypical degradation of vimentin without preventing CD16 shedding.[Abstract] [Full Text] [Related] [New Search]