These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of processing on the displacement of whey proteins: applying the orogenic model to a real system.
    Author: Woodward NC, Wilde PJ, Mackie AR, Gunning AP, Gunning PA, Morris VJ.
    Journal: J Agric Food Chem; 2004 Mar 10; 52(5):1287-92. PubMed ID: 14995135.
    Abstract:
    Atomic force microscopy (AFM) has been used to investigate the displacement of a commercial whey protein system and the behavior as compared to that of beta-lactoglobulin (Mackie, A. R.; Gunning, A. P.; Wilde, P. J.; Morris, V. J. Orogenic displacement of protein from the air-water interface by competitive adsorption. J. Colloid Interface Sci. 1999, 210, 157-166). The whey protein isolate (WPI) was displaced from an air-water interface by the surfactants Tween 20 and Tween 60. Displacement data obtained were compared with data obtained for pure beta-lactoglobulin and have shown that WPI was more resistant to displacement from the air-water interface than native beta-lactoglobulin. This was related to the greater surface elasticity of WPI at higher surface stresses. In the presence of Tween 20, WPI was observed to remain on the interface at surface pressures up to 8 mN/m greater than the surface pressure at which complete displacement of beta-lactoglobulin was observed. Displacement of WPI and beta-lactoglobulin films by the surfactant Tween 60 showed similar results. However, because of the lower surface activity of Tween 60, it was not possible to reach surface tension values similar to those obtained for Tween 20. Despite the lower surface activity of Tween 60, WPI was still observed to be present at the interface at surface pressure values greater than those by which beta-lactoglobulin had been completely displaced.
    [Abstract] [Full Text] [Related] [New Search]