These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hydrogen thresholds as indicators of dehalorespiration in constructed treatment wetlands. Author: Kassenga G, Pardue JH, Moe WM, Bowman KS. Journal: Environ Sci Technol; 2004 Feb 15; 38(4):1024-30. PubMed ID: 14998014. Abstract: Anaerobic degradation of cis-1,2-dichloroethene (cis-1,2-DCE) and 1,2-dichloroethane (1,2-DCA) was studied in microcosms derived from a laboratory-scale upflow treatment wetland system used to biodegrade chlorinated compounds present in groundwater from a Superfund site. Dechlorination kinetics of cis-1,2-DCE (0.94-1.57 d(-1)) and 1,2-DCA (0.15-0.71 d(-1)) were rapid, and degradation proceeded to completion with ethene or ethane as terminal dechlorination products. Hydrogen concentrations, measured simultaneously during dechlorination, were significantly different for the two compounds, approximately 2.5 nM for cis-1,2-DCE and 38 nM for 1,2-DCA. Methanogenesis proceeded during the degradation of 1,2-DCA when H2 concentrations were high but not during the dechlorination of cis-1,2-DCE when H2 concentrations were below published thresholds for methanogenesis. A 16S rRNA gene-based approach indicates that microorganisms closely related to Dehalococcoides ethenogenes were present and that they were distributed throughout the bottom, middle, and top of the upflow treatment wetland system. These results coupled with consideration of hydrogen thresholds, degradation kinetics, daughter products, and measurements of methanogenesis strongly suggest that halorespirers were responsible for dechlorination of cis-1,2-DCE and that 1,2-DCA dechlorination was co-metabolic, likely mediated by acetogens or methanogens. Rapid dechlorination potential was distributed throughout the wetland bed, both within and below the rhizosphere, indicating that reductive dechlorination pathways can be active in anaerobic environments located in close spatial proximity to aerobic environments and plants in treatment wetland systems.[Abstract] [Full Text] [Related] [New Search]