These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Contribution of stretch reflexes to locomotor control: a modeling study.
    Author: Yakovenko S, Gritsenko V, Prochazka A.
    Journal: Biol Cybern; 2004 Feb; 90(2):146-55. PubMed ID: 14999481.
    Abstract:
    It is known that the springlike properties of muscles provide automatic load compensation during weight bearing. How crucial is sensory control of the motor output given these basic properties of the locomotor system? To address this question, a neuromuscular model was used to test two hypotheses. (1) Stretch reflexes are too weak and too delayed to contribute significantly to weight-bearing. (2) The important contributions of sensory input involve state-dependent processing. We constructed a two-legged planar locomotor model with 9 segments, driven by 12 musculotendon actuators with Hill-type force-velocity and monotonic force-length properties. Electromyographic (EMG) profiles of the simulated muscle groups during slow level walking served as actuator activation functions. Spindle Ia and tendon organ Ib sensory inputs were represented by transfer functions with a latency of 35 ms, contributing 30% to the net EMG profile and gated to be active only when the receptor-bearing muscles were contracting. Locomotor stability was assessed by parametric variations of actuator maximum forces during locomotion in open-loop ("deafferented") trials and in trials with feedback control based on either sensory-evoked stretch reflexes or finite-state rules. We arrived at the following conclusions. (1) In the absence of sensory control, the intrinsic stiffness of limb muscles driven by a stereotyped rhythmical pattern can produce surprisingly stable gait. (2) When the level of central activity is low, the contribution of stretch reflexes to load compensation can be crucial. However, when central activity provides adequate load compensation, the contribution of stretch reflexes is less significant. (3) Finite-state control can greatly extend the adaptive capability of the locomotor system.
    [Abstract] [Full Text] [Related] [New Search]