These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Swellable matrices for the controlled-release of diclofenac sodium: formulation and in vitro studies.
    Author: Bravo SA, Lamas MC, Salomon CJ.
    Journal: Pharm Dev Technol; 2004; 9(1):75-83. PubMed ID: 15000468.
    Abstract:
    Oral administration has been the most usual and convenient employed route of drug delivery systems. Particularly, oral sustained-release systems for the delivery of drugs by a process of continuous swelling of the polymeric carrier have been investigated. Thus, the goal of this study was to evaluate the effects of hydroxypropyl methylcellulose (HPMC) and carboxypolymer (Carbopol 934) on the release behavior of diclofenac sodium (DS) from a swellable matrix tablet system. Nine different DS controlled-released tablets were compressed by using the wet-granulation technology. The influence of the polymer content, the polymer ratio, the polymeric swelling behavior, and the pH changes on the release rate of DS was investigated. There was no significant difference in drug release when total polymer concentration was 10%. When the tablets were formulated having 20% or 30% of HPMC/carbomer, it was observed that a more rapid release of DS occurred as the carboxypolymer ratio within the matrices increased. In agreement with previous results, the dissolution studies demonstrated that the combination of these two polymeric matrix formers resulted in near zero-order release rate of DS. The DS release from all these matrix tablets was pH dependent, being markedly reduced at lower pH, and could be attributed to the poor solubility of DS at this pH value. In HCl 0.1 N solution, HPMC controlled drug release because the carbomer has a low solubility at this pH. As the pH increased, the carbomer became ionized, being able to interact with HPMC to control the drug release.
    [Abstract] [Full Text] [Related] [New Search]