These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tenascin-C upregulation by transforming growth factor-beta in human dermal fibroblasts involves Smad3, Sp1, and Ets1.
    Author: Jinnin M, Ihn H, Asano Y, Yamane K, Trojanowska M, Tamaki K.
    Journal: Oncogene; 2004 Mar 04; 23(9):1656-67. PubMed ID: 15001984.
    Abstract:
    In cultured human dermal fibroblasts, transforming growth factor (TGF)-beta induced the mRNA expression of tenascin-C (TN-C). The molecular mechanism(s) underlying this process is not presently understood. In this study, we performed serial 5' deletion and a transient transfection analysis to define a region in the TN-C promoter mediating the inducible responsiveness to TGF-beta. This region contains an atypical nucleotide recognition element for the Smad family of transcriptional regulators. A DNA affinity precipitation assay revealed that Smad2/Smad3 bound to this site in a transient and specific manner. Overexpression of Smad3 or Smad4 activated the TN-C promoter activity and superinduced the TN-C promoter activity stimulated by TGF-beta. Moreover, simultaneous cotransfection of Smad3 and Smad4 activated the TN-C promoter activity in a synergistic manner. Mutation of the Smad-binding sites, the Ets-binding sites, or Sp1/3-binding sites in the TN-C promoter abrogated the TGF-beta/Smad-inducible promoter activity. Immunoprecipitation analysis revealed that Smad3, Sp1, and Ets1 form a transcriptionally active complex. Furthermore, the interaction between Smads and CBP/p300 in TGF-beta signaling was confirmed. These findings demonstrate the existence of a novel, functional binding element in the proximal region of the TN-C promoter mediating responsiveness to TGF-beta involving Smad3/4, Sp1, Ets1, and CBP/p300.
    [Abstract] [Full Text] [Related] [New Search]