These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Collaborative activities of macrophage-stimulating protein and transforming growth factor-beta1 in induction of epithelial to mesenchymal transition: roles of the RON receptor tyrosine kinase.
    Author: Wang D, Shen Q, Chen YQ, Wang MH.
    Journal: Oncogene; 2004 Mar 04; 23(9):1668-80. PubMed ID: 15001985.
    Abstract:
    Epithelial to mesenchymal transition (EMT) is a process occurring during embryonic development and cancer progression. Using recepteur d'origine nantais (RON)-expressing epithelial cells as a model, we showed that RON activation causes spindle-shaped morphology with increased cell motilities. These activities resemble those observed in EMT induced by transforming growth factor (TGF)-beta1 or by Ras-Raf signaling. By immunofluorescent and Western blot analyses, we found that constitutive RON expression results in diminished expression of E-cadherin, redistribution of beta-catenin, reorganization of actin cytoskeleton, and increased expression of vimentin, a mesenchymal filament. RON expression is also essential for TGF-beta1-induced expression of alpha-smooth muscle actin (alpha-SMA), a specialized mesenchymal marker. In the study of signaling pathways responsible for RON-mediated EMT, it was found that PD98059, a MAP kinase inhibitor, blocks the collaborative activities of RON and TGF-beta1 in induction of alpha-SMA expression and restores epithelial cells to their original morphology. Moreover, we showed that RON expression increases Smad2 gene promoter activities and protein expression, which significantly lowers TGF-beta1 threshold for EMT induction. These results suggest that persistent RON expression and activation cause the loss of epithelial phenotypes. These changes, collaborating with TGF-beta1 signaling, could play a critical role in epithelial transdifferentiation towards invasiveness and metastasis of certain cancers.
    [Abstract] [Full Text] [Related] [New Search]