These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress.
    Author: Morant-Manceau A, Pradier E, Tremblin G.
    Journal: J Plant Physiol; 2004 Jan; 161(1):25-33. PubMed ID: 15002661.
    Abstract:
    The effect of salt stress (NaCl 85.7 or 110 mmol/L) was investigated in the triticale T300 and its parental species, Triticum dicoccum farrum (Triticum df) and Secale cereale cv. Petkus. Triticum df and T300 were more salt-tolerant than the rye (110 mmol/L NaCl was the highest concentration allowing rye growth to the three-leaf stage). Na+, K+ and Cl- ions accounted for almost half of the osmotic adjustment in Triticum df and T300, and up to 90% in rye. Salinity decreased the net photosynthesis and transpiration rates of the three cereals as compared to control plants, but induced no significant change in chlorophyll a fluorescence parameters. Water-use efficiency (WUE) increased with salinity. In the presence of 110 mmol/L NaCl, the K+/Na+ ratio decreased markedly in rye as compared to the other two cereals. Proline concentration, which increased in Triticum df and T300, could have protected membrane selectivity in favour of K+. Proline content remained low in rye, and increasing soluble sugar content did not appear to prevent competition between Na+ and K+. The salt sensitivity of rye could be due to low K+ uptake in the presence of a high NaCl concentration.
    [Abstract] [Full Text] [Related] [New Search]