These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Statistics of Poincaré recurrences for maps with integrable and ergodic components.
    Author: Hu H, Rampioni A, Rossi L, Turchetti G, Vaienti S.
    Journal: Chaos; 2004 Mar; 14(1):160-71. PubMed ID: 15003057.
    Abstract:
    Recurrence gives powerful tools to investigate the statistical properties of dynamical systems. We present in this paper some applications of the statistics of first return times to characterize the mixed behavior of dynamical systems in which chaotic and regular motion coexist. Our analysis is local: we take a neighborhood A of a point x and consider the conditional distribution of the points leaving A and for which the first return to A, suitably normalized, is bigger than t. When the measure of A shrinks to zero the distribution converges to the exponential e(-t) for almost any point x, if the system is mixing and the set A is a ball or a cylinder. We consider instead a system, a skew integrable map of the cylinder, which is not ergodic and has zero entropy. This map describes a shear flow and has a local mixing property. We rigorously prove that the statistics of first return is of polynomial type around the fixed points and we generalize around other points with numerical computations. The result could be extended to quasi-integrable area preserving maps such as the standard map for small coupling. We then analyze the distribution of return times in a region which is composed by two invariants subdomains: one with a mixing dynamics and the other with an integrable dynamics given by our shear flow. We show that the statistics of first return in this mixed region is asymptotically given by the exponential law, but this limit is attained by an intermediate regime where exponential and polynomial laws are linearly superposed and weighted by some factors which are proportional to the relative sizes of the chaotic and regular regions. The result on the statistics of first return times for mixed regions in the phase space can provide a basis to analyze such a property for area preserving maps in mixed regions even when a rigorous result is not available. To this end we present numerical investigations on the standard map which confirm the results of the model.
    [Abstract] [Full Text] [Related] [New Search]