These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Role of group II and III metabotropic glutamate receptors in rhythmic patterns of the neonatal rat spinal cord in vitro.
    Author: Taccola G, Marchetti C, Nistri A.
    Journal: Exp Brain Res; 2004 Jun; 156(4):495-504. PubMed ID: 15007577.
    Abstract:
    Electrophysiological recordings were used to explore the role of group II and III metabotropic glutamate receptors (mGluRs) in oscillatory patterns generated by the neonatal rat spinal cord in vitro. Neither the group II agonist DCG-IV (and the selective antagonist EGLU), nor the group III agonist L-AP4 (and its selective antagonist CPPG) had any effect on lumbar motoneuron membrane potential or input resistance. This observation suggests that motoneurons expressed no functional group II and III mGluRs and received no network-based, tonic influence mediated by them. DCG-IV or L-AP4 strongly depressed synaptic responses evoked by single dorsal root (DR) stimuli, an effect counteracted by their respective antagonist. EGLU or CPPG per se had no effect on synaptic responses, indicating no mGluR autoreceptor-dependent control of transmitter release. L-AP4 largely depressed cumulative depolarization, windup and associated oscillations, whereas synaptic depression induced by DCG-IV waned with repeated stimuli. L-AP4 slowed down fictive locomotor patterns and arrested disinhibited bursting, which could, however, be promptly restored by DR electrical stimulation. DCG-IV had no significant effect on fictive locomotion, but it blocked disinhibited bursting. EGLU facilitated bursting, suggesting that burst termination was partly controlled by group II mGluRs. All these effects were reversible on washout. It is concluded that activation of group II and III mGluRs differentially modulated rhythmic patterns recorded from motoneurons via network-dependent actions, which probably included decrease in the release of neurotransmitters at key circuit points.
    [Abstract] [Full Text] [Related] [New Search]