These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry.
    Author: Matsuo K, Gekko K.
    Journal: Carbohydr Res; 2004 Feb 25; 339(3):591-7. PubMed ID: 15013395.
    Abstract:
    Vacuum-ultraviolet circular dichroism (VUVCD) spectra of five monosaccharides (D-glucose, D-mannose, D-galactose, D-xylose, and D-lyxose) and five disaccharides (maltose, isomaltose, cellobiose, gentiobiose, and lactose) were measured to 160 nm using a synchrotron-radiation VUVCD spectrophotometer in aqueous solution under high vacuum at 25 degrees C. Most of the saccharides show a positive peak with some shoulders at around 170 nm, except for D-galactose and lactose, which show two distinct negative peaks at around 165 and 177 nm. These spectra are influenced by such structural factors as alpha and beta anomers at C-1, axial and equatorial hydroxyl groups at C-2 and C-4, trans (T) and gauche (G) conformations of the hydroxymethyl group at C-5, and the type of glycosidic linkage. Deconvolution of the VUVCD spectra of D-glucose, D-mannose, and D-galactose into six independent Gaussian components for alpha-GG, alpha-GT, alpha-TG, beta-GG, beta-GT, and beta-TG conformations suggests that the alpha anomer has red-shifted spectra relative to the beta anomer, and that GG and GT conformations have positive and negative circular dichroism signs, respectively, while the sign for TG conformation is anomer dependent. These speculations from the deconvolution analyses are also supported by the VUVCD spectra of disaccharides. These results give new insight into the equilibrium conformations of saccharides, demonstrating the usefulness of synchrotron-radiation VUVCD spectroscopy.
    [Abstract] [Full Text] [Related] [New Search]