These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro.
    Author: Zhu ZT, Munhall A, Shen KZ, Johnson SW.
    Journal: Eur J Neurosci; 2004 Mar; 19(5):1296-304. PubMed ID: 15016087.
    Abstract:
    We used whole-cell patch recordings in current clamp to investigate the ionic dependence of burst firing induced by N-methyl-d-aspartate (NMDA) in neurons of the subthalamic nucleus (STN) in slices of rat brain. NMDA (20 microm) converted single-spike firing to burst firing in 87% of STN neurons tested. NMDA-induced bursting was blocked by AP5 (50 microm), and was not mimicked by the non-NMDA receptor agonist AMPA (0.6 microm). Tetrodotoxin (1 microm) converted bursts to oscillations of membrane potential, which were most robust when oscillations ranged between -50 and -70 mV. The NMDA bursts were blocked by an elevated extracellular concentration of Mg(2+), but superfusate containing no added Mg(2+) either reduced or increased burst firing, depending upon the amount of intracellular current injection. Block of K(+) conductances by apamin and tetraethylammonium prolonged burst duration, but iberiotoxin had no effect. NMDA-induced burst firing and membrane oscillations were completely blocked by superfusate containing no added Ca(2+), and they were significantly reduced when patch pipettes contained BAPTA. Selective antagonists for T-type (mibefradil, 10 microm), L-type (nifedipine, 3 microm), and N-type (omega-conotoxin GVIA, 1 micro m) Ca(2+) channels had no effect on NMDA burst firing. Superfusate containing a low concentration of Na(+) (20 mm) completely abolished NMDA-induced burst firing. Flufenamic acid (10 microm), which blocks current mediated by Ca(2+)-activated nonselective cation channels (I(CAN)), reversibly abolished NMDA-depended bursting. These results are consistent with the hypothesis that NMDA-induced burst firing in STN neurons requires activation of either an I(CAN) or a Na(+)-Ca(2+) exchanger.
    [Abstract] [Full Text] [Related] [New Search]