These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor.
    Author: Liu S, Dai Z, Chen H, Ju H.
    Journal: Biosens Bioelectron; 2004 Apr 15; 19(9):963-9. PubMed ID: 15018950.
    Abstract:
    Direct electrochemistry and thermal stability of hemoglobin (Hb) immobilized on a nanometer-sized zirconium dioxide (ZrO2) modified pyrolytic graphite (PG) electrode were studied. The immobilized Hb displayed a couple of stable and well-defined redox peaks with an electron transfer rate constant of (7.90 +/- 0.93)s(-1) and a formal potential of -0.361 V (-0.12 V versus NHE) in 0.1M pH 7.0 PBS. Both nanometer-sized ZrO2 and dimethyl sulfoxide (DMSO) could accelerate the electron transfer between Hb and the electrode. Spectroscopy analysis of the Hb/ZrO2/DMSO film showed that the immobilized Hb could retain its natural structure. This modified electrode showed a high thermal stability up to 74 degrees C and an electrocatalytic activity to the reduction of hydrogen peroxide (H2O2) without the aid of an electron mediator. The electrocatalytic response showed a linear dependence on the H2O2 concentration ranging from 1.5 to 30.2 microM with a detection limit of 0.14 microM at 3sigma. The apparent Michaelis-Menten constant KMapp for H2O2 sensor was estimated to be (0.31 +/- 0.02) mM, showing a high affinity.
    [Abstract] [Full Text] [Related] [New Search]