These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydroxylation at C4' or C6 is essential for apoptosis-inducing activity of flavanone through activation of the caspase-3 cascade and production of reactive oxygen species.
    Author: Ko CH, Shen SC, Chen YC.
    Journal: Free Radic Biol Med; 2004 Apr 01; 36(7):897-910. PubMed ID: 15019974.
    Abstract:
    Previous studies demonstrated that hydroxyl groups play important roles in the antioxidative activities of flavonoids; however, the importance of structurally related hydroxylation in their apoptosis-inducing activities is still undefined. In the present study, flavanone with hydroxylation at C4' and C6 had a significant cytotoxic effect in human leukemia HL-60 cells accompanied by the occurrence of DNA ladders, apoptotic bodies, and hypodiploid cells, characteristics of apoptosis. The replacement of a hydroxyl group (OH) by a methoxyl (OCH3) group at C4' or C6 attenuated the apoptotic effect in cells, and there was no significant cytotocity of flavanone or flavanone with OH or OCH3 in C7-treated HL-60 cells. Induction of enzyme activity of caspase-3 and -9, but not caspase-1 and -8, accompanied by release of cytocrome C from mitochondria to cytosol and the appearance of cleaved of PARP (85 kDa), D4-GDI (23 kDa), and caspase-3 (p17/p15) fragments, was identified in 4'-OH- or 6-OH- flavanone-treated HL-60 cells. Caspase-3 and -9 inhibitors Ac-DEVD-FMK and Ac-LEHD-FMK, but not caspase-1 and -8 inhibitors Ac-YVAD-FMK and Ac-LETD-FMK, attenuated 4'-OH- or 6-OH-flavanone-induced cell death. And, inhibition of capsase-9 activity by Ac-LEHD-FMK suppresses caspase-3 protein procession induced by 4'-OH- and 6-OH-flavanone, indicative of caspase-9 activation locating upstream of caspase-3. A decrease in the antiapoptotic protein Mcl-1 and increases in the pro-apoptotic proteins Bax and Bad were found in 4'-OH- or 6-OH-flavanone-treated HL-60 cells. Induction of endogenous ROS production was detected in 4'-OH- or 6-OH-flavanone-treated HL-60 cells by the DCHF-DA assay. Antioxidants such as N-acetylcysteine (NAC), catalase (CAT), superoxide dismutase (SOD), and allopurinol (ALL), but not pyrrolidine dithiocarbamate (PDTC) or diphenylene iodonium (DPI), significantly inhibited 4'-OH- or 6-OH-flavanone-induced ROS production, with blocking of the apoptosis induced by 4'-OH- or 6-OH-flavanone. The apoptosis-inducing activity of 4'-OH- or 6-OH-flavanone was also observed in another leukemia cell line (Jurkat), but was not found in mature monocytic cells (THP-1) and normal human polymorphonuclear neutrophils (PMNs). This suggests that hydroxylation at C4' or C6 is important to the apoptosis-inducing activities of flavanone through ROS production, and that activation of the caspase-3 cascade, downstream of caspase-9 activation, is involved.
    [Abstract] [Full Text] [Related] [New Search]