These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the fast-forming intermediate, des [30-75], in the reductive unfolding of onconase.
    Author: Xu G, Narayan M, Welker E, Scheraga HA.
    Journal: Biochemistry; 2004 Mar 23; 43(11):3246-54. PubMed ID: 15023075.
    Abstract:
    A fast-forming intermediate in the reductive unfolding of frog onconase (ONC), des [30-75], analogous to the des [40-95] intermediate found in the reductive unfolding of its structural homologue, bovine pancreatic ribonuclease A (RNase A), has been isolated and characterized. The midpoints of the thermal transition and chemical denaturing curves (representing global unfolding) indicate that the conformation of des [30-75] is considerably less stable than that of the parent molecule, suggesting that the (30-75) disulfide bond plays a significant role in the conformational stability of ONC. While des [30-75] is formed very quickly by a partial reduction of the parent molecule in a local unfolding step, it is not as easily susceptible to further reduction, indicating that its three disulfides are much more buried compared to the (30-75) disulfide bond in the parent protein. The nature of des [30-75] is similar to that of des [40-95] RNase A, in that des [30-75] ONC is also a disulfide-secure species. In addition, based on the resistance to mild reducing conditions, structured des species appear to form in ONC from unstructured three-disulfide-containing ensembles. This step is key in the oxidative folding of RNaseA, and is much faster in ONC than the formation of the structured des [40-95] species in RNase A.
    [Abstract] [Full Text] [Related] [New Search]