These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: C-H to N substitution dramatically alters the sequence-specific DNA alkylation, cytotoxicity, and expression of human cancer cell lines.
    Author: Bando T, Narita A, Iwai A, Kihara K, Sugiyama H.
    Journal: J Am Chem Soc; 2004 Mar 24; 126(11):3406-7. PubMed ID: 15025451.
    Abstract:
    We designed and synthesized sequence-specific alkylating conjugates 1 and 2, which selectively alkylate matched sequences at nanomolar concentrations. Conjugates 1 and 2 differ only in that the C-H is substituted by an N in the second ring, which precisely recognizes and effectively alkylates DNA according to the recognition rule of Py-Im polyamides. We investigated sequence-specific DNA alkylation, cytotoxicity in 39 human cancer cell lines, and the effect on expression levels in cancer cell lines by Py-Im conjugates 1 and 2. The COMPARE analysis of the mean graphs showed that conjugates 1 and 2 did not correlate well with each other (r = 0.65) despite having a common DNA alkylating mechanism (purine N3 alkylation). Array-based gene expression analysis demonstrated that there are several oppositely regulated genes. The results suggest the intriguing possibility that DNA alkylating agents recognizing longer base-pair sequences may provide a promising approach for developing new types of antigene agents.
    [Abstract] [Full Text] [Related] [New Search]