These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A single target is sufficient to account for the biological effects of the A-factor receptor protein of Streptomyces griseus. Author: Kato JY, Miyahisa I, Mashiko M, Ohnishi Y, Horinouchi S. Journal: J Bacteriol; 2004 Apr; 186(7):2206-11. PubMed ID: 15028707. Abstract: In the model of the A-factor (2-isocapryloyl-3R-hydroxymethyl-gamma-butyrolactone) regulatory cascade in Streptomyces griseus, A-factor binds ArpA, the A-factor receptor protein, that has bound to the adpA promoter and dissociates it from the DNA, thus inducing the transcription of adpA. AdpA switches on the transcription of a number of genes required for secondary metabolism and morphological differentiation, forming an AdpA regulon. Consistent with this model, arpA null mutants produced streptomycin and a yellow pigment in larger amounts and formed aerial hyphae from an earlier growth stage than the wild-type strain. On the other hand, mutant MK2, expressing a mutant ArpA (Trp119Ala), neither produced secondary metabolites nor formed aerial hyphae, because this A-factor-insensitive mutant ArpA always bound to and repressed the adpA promoter due to the amino acid replacement of Trp-119 with Ala. Introduction of adpA under the control of a foreign promoter into mutant MK2 restored all of the phenotypes that we could observe, which suggests that the only significant target of ArpA is adpA. In contrast to other gamma-butyrolactone regulatory systems, disruption of arpA had no effect on A-factor production, indicating that ArpA does not regulate A-factor biosynthesis. Instead, A-factor production was found to be repressed by AdpA in a two-step regulatory feedback loop.[Abstract] [Full Text] [Related] [New Search]