These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High glucose-induced alterations in subendothelial matrix perlecan leads to increased monocyte binding. Author: Vogl-Willis CA, Edwards IJ. Journal: Arterioscler Thromb Vasc Biol; 2004 May; 24(5):858-63. PubMed ID: 15031130. Abstract: OBJECTIVE: Hyperglycemia is an independent risk factor for cardiovascular disease in diabetic patients, although the link between the two is unknown. These studies were designed to model effects of high glucose on an early event in atherogenesis: the binding of monocytes to subendothelial matrix (SEM). METHODS AND RESULTS: SEM was prepared from human aortic endothelial cells (HAECs) and bovine aortic endothelial cells (BAECs) cultured in the presence of low (5 mmol/L) or high (30 mmol/L) glucose for 3 to 5 days. Monocyte binding was significantly higher (P<0.05) to the SEM of both HAEC and BAEC exposed to high glucose. This increase was a result of changes in SEM heparan sulfate proteoglycans (HSPGs). Metabolic radiolabeling of BAEC demonstrated a 24% decrease in [35S]sulfate incorporation into SEM HSPG produced by cells incubated in 30 mmol/L versus 5 mmol/L glucose, whereas no glucose-associated differences were measured in [35S]methionine incorporation into proteoglycans (PGs) or non-PG proteins. Autoradiography revealed 2 high-molecular weight SEM HSPGs. One was a hybrid PG that contained both heparan sulfate and chondroitin sulfate/dermatan sulfate chains. Both PGs were identified by Western blotting as perlecan. CONCLUSIONS: These results illustrate that hyperglycemia-induced structural changes in perlecan may result in a SEM that is more favorable to retention of monocytes.[Abstract] [Full Text] [Related] [New Search]