These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Correction of retention time shifts for chromatographic fingerprints of herbal medicines.
    Author: Gong F, Liang YZ, Fung YS, Chau FT.
    Journal: J Chromatogr A; 2004 Mar 12; 1029(1-2):173-83. PubMed ID: 15032363.
    Abstract:
    In this study, the combination of chemometric resolution and cubic spline data interpolation was investigated as a method to correct the retention time shifts for chromatographic fingerprints of herbal medicines obtained by high-performance liquid chromatography-diode array detection (HPLC-DAD). With the help of the resolution approaches in chemometrics, it was easy to identify the purity of chromatographic peak clusters and then resolve the two-dimensional response matrix into chromatograms and spectra of pure chemical components so as to select multiple mark compounds involved in chromatographic fingerprints. With these mark components determined, the retention time shifts of chromatographic fingerprints might be then corrected effectively. After this correction, the cubic spline interpolation technique was then used to reconstruct new chromatographic fingerprints. The results in this work showed that, the purity identification of the chromatographic peak clusters together with the resolution of overlapping peaks into pure chromatograms and spectra by means of chemometric approaches could provide the sufficient chromatographic and spectral information for selecting multiple mark compounds to correct the retention time shifts. The cubic spline data interpolation technique was user-friendly to the reconstruction of new chromatographic fingerprints with correction. The successful application to the simulated and real chromatographic fingerprints of two Cortex cinnamomi, fifty Rhizoma chuanxiong, ten Radix angelicae and seventeen Herba menthae samples from different sources demonstrated the reliability and applicability of the approach investigated in this work. Pattern recognition based on principal component analysis for identifying inhomogenity in chromatographic fingerprints from real herbal medicines could further interpret it.
    [Abstract] [Full Text] [Related] [New Search]