These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinematics of treadmill locomotion in rats conceived, born, and reared in a hypergravity field (2 g). Adaptation to 1 g. Author: Bouët V, Borel L, Harlay F, Gahéry Y, Lacour M. Journal: Behav Brain Res; 2004 Apr 02; 150(1-2):207-16. PubMed ID: 15033294. Abstract: The kinematics of treadmill locomotion in rats conceived, born, and raised in a hypergravity environment (HG: 2g) until the age of 3 months was investigated for 5 weeks after their exposition to earth's gravity. The locomotor performance of the HG rats (N=7) was compared to that of age-matched control rats (N=8) housed at 1g for the same period. Kinematic analysis of treadmill locomotion was performed up to 35 days of terrestrial life by an optoelectronic motion analyzer (ELITE system). Results showed that the HG rats exhibited a faster locomotor rhythm (increased number of steps/s), walked closer to the ground, and had a more dorsiflexed foot position. Also, HG rats had shorter steps. The data also highlight a fast adaptation to normal gravity since all the locomotor parameters returned to normal values within 3 weeks. The locomotor modifications may be seen as the persistence of a hypergravity-induced posturo-locomotor adaptation in the centrifuge and/or to more functional changes of sensorimotor systems. Because locomotor performance of HG rats is not severely affected, it is concluded that early development of locomotion processes is highly resistant to gravito-inertial changes.[Abstract] [Full Text] [Related] [New Search]