These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modular structure in developmentally eliminated DNA in Tetrahymena may be a consequence of frequent insertions and deletions.
    Author: Huvos P.
    Journal: J Mol Biol; 2004 Mar 05; 336(5):1075-86. PubMed ID: 15037070.
    Abstract:
    The work reported here describes insertion-deletion (Indel) polymorphisms in two internally eliminated sequences (IESs, that are deleted during development in Tetrahymena): a 1.8 kb Indel at one end of the 1.1 kb H1 IES and a 0.5 kb Indel inside the 1.4 kb calmodulin (C) IES. These two IESs are located in the proximity of the H1 histone and calmodulin genes, respectively, and are among the ten IESs that have been fully sequenced out of an estimated total of 6000. Three hundred base-pairs of the 1.8 kb H1 Indel are retained in the macronucleus. Both the +Indel and the -Indel variants of the H1 and C IESs that occur in different strains are eliminated during development. Thus, a drastic change involving over half of the deleted sequence and 300 bp of flanking sequence does not disable developmental elimination of the H1 IES, which may indicate a lack of requirement for specific sequences on the Indel side of the IES. The H1 Indel is a composite of three sequence elements: a unique segment and two other sections containing members of different repeat families. One of these, a 0.5 kb repetitive component, is 75% similar to another 0.5 kb sequence that constitutes the C Indel, a sequence present in the middle of the calmodulin IES in some strains, but not in others. Therefore, the C Indel sequence is likely to have been part of a mobile unit, even though it has no obvious features of a transposon. However, sequences similar to the C Indel are present in about 100 copies in the genome. The results suggest that IESs may consist, at least in part, of relatively short modules of repeated sequences that are the source of insertion-deletion polymorphisms among strains of Tetrahymena thermophila.
    [Abstract] [Full Text] [Related] [New Search]