These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mapping the presence of Wolbachia pipientis on the phylogeny of filarial nematodes: evidence for symbiont loss during evolution.
    Author: Casiraghi M, Bain O, Guerrero R, Martin C, Pocacqua V, Gardner SL, Franceschi A, Bandi C.
    Journal: Int J Parasitol; 2004 Feb; 34(2):191-203. PubMed ID: 15037105.
    Abstract:
    Wolbachia pipientis is a bacterial endosymbiont associated with arthropods and filarial nematodes. In filarial nematodes, W. pipientis has been shown to play an important role in the biology of the host and in the immuno-pathology of filariasis. Several species of filariae, including the most important parasites of humans and animals (e.g. Onchocerca volvulus, Wuchereria bancrofti and Dirofilaria immitis) have been shown to harbour these bacteria. Other filarial species, including an important rodent species (Acanthocheilonema viteae), which has been used as a model for the study of filariasis, do not appear to harbour these symbionts. There are still several open questions about the distribution of W. pipientis in filarial nematodes. Firstly the number of species examined is still limited. Secondly, it is not clear whether the absence of W. pipientis in negative species could represent an ancestral characteristic or the result of a secondary loss. Thirdly, several aspects of the phylogeny of filarial nematodes are still unclear and it is thus difficult to overlay the presence/absence of W. pipientis on a tree representing filarial evolution. Here we present the results of a PCR screening for W. pipientis in 16 species of filariae and related nematodes, representing different families/subfamilies. Evidence for the presence of W. pipientis is reported for five species examined for the first time (representing the genera Litomosoides, Litomosa and Dipetalonema); original results on the absence of this bacterium are reported for nine species; for the remaining two species, we have confirmed the absence of W. pipientis recently reported by other authors. In the positive species, the infecting W. pipientis bacteria have been identified through 16S rDNA gene sequence analysis. In addition to the screening for W. pipientis in 16 species, we have generated phylogenetic reconstructions based on mitochondrial gene sequences (12S rDNA; COI), including a total of 28 filarial species and related spirurid nematodes. The mapping of the presence/absence of W. pipientis on the trees generated indicates that these bacteria have possibly been lost during evolution along some lineages of filarial nematodes.
    [Abstract] [Full Text] [Related] [New Search]